PRODUCT SUMMARY

SKY77316: PA Module for Quad-Band GSM / GPRS / EDGE

Applications
- Quad-band cellular handsets:
 - Class 4 GSM850/900
 - DCS1800
 - PCS1900
 - Class 12 GPRS multi-slot operation
 - EDGE polar modulation

Features
- Low input power 0–6 dBm
- High efficiency:
 - GSM850 49%
 - GSM900 53%
 - PCS 53%
 - DCS 53%
- Wideband VAPC control path
- Integrated noise filtering
- Input/output matching
- 22-pad MCM Package
- Small outline
 - 6 mm x 8 mm
- Low profile
 - 1.2 mm
- Gold-plated, lead-free contacts

The SKY77316 Power Amplifier Module (PAM) is designed in a compact form factor for quad-band cellular handsets comprising GSM850/900, DCS1800, and PCS1900 operation. The PAM also supports Class 12 General Packet Radio Service (GPRS) multi-slot operation.

The module consists of a GSM850/900 PA block and a DCS1800/PCS1900 PA block, impedance-matching circuitry for 50 Ω input and output impedances, and a Power Amplifier Control (PAC) block. A custom BiCMOS integrated circuit provides the internal PAC function and interface circuitry.

The two separate Heterojunction Bipolar Transistor (HBT) PA blocks are fabricated onto a single Gallium Arsenide (GaAs) die. One PA block supports the GSM850/900 bands, and the other PA block supports the DCS1800 and PCS1900 bands. Both PA blocks share common power supply pads to distribute current. The GaAs die, the silicon die, and the passive components are mounted on a multilayer laminate substrate. The assembly is encapsulated with plastic overmold.

The RF input and output ports are internally matched to 50 Ω to reduce the number of external components for a quad-band design. Extremely low leakage current (10 µA, typical) of the dual PA module maximizes handset standby time. The SKY77316 also contains band select switching circuitry to select GSM (logic 0) and DCS/PCS (logic 1) as determined from the Band Select (B_SEL) signal. In the functional block diagram shown in Figure 1, the B_SEL pad selects the PA output (LB_OUT or HB_OUT) while the Analog Power Control (VAPC) controls the level of output power.

The integrated power amplifier control (PAC) function provides envelope amplitude control by reducing sensitivity to input drive, temperature, power supply, and process variation while providing the necessary noise filtering for the overall system power control feedback. The TX_EN input signal (pad 2) allows initial turn-on of the PAC circuitry to minimize battery drain.

The functional block diagram shown in Figure 1, the B_SEL pad selects the PA output (LB_OUT or HB_OUT) while the Analog Power Control (VAPC) controls the level of output power.

The integrated power amplifier control (PAC) function provides envelope amplitude control by reducing sensitivity to input drive, temperature, power supply, and process variation while providing the necessary noise filtering for the overall system power control feedback. The TX_EN input signal (pad 2) allows initial turn-on of the PAC circuitry to minimize battery drain.

Figure 1. Functional Block Diagram
Copyright © 2003–2005, Skyworks Solutions, Inc. All Rights Reserved.

Information in this document is provided in connection with Skyworks Solutions, Inc. (“Skyworks”) products. These materials are provided by Skyworks as a service to its customers and may be used for informational purposes only by the customer. Skyworks assumes no responsibility for errors or omissions in these materials. Skyworks may make changes to its documentation, products, specifications and product descriptions at any time, without notice. Skyworks makes no commitment to update the information and shall have no responsibility whatsoever for conflicts, incompatibilities, or other difficulties arising from future changes to its documentation, products, specifications and product descriptions.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by or under this document. Except as may be provided in Skyworks’ Terms and Conditions of Sale for such products, Skyworks assumes no liability whatsoever in association with its documentation, products, specifications and product descriptions.

THESE MATERIALS ARE PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED OR OTHERWISE, RELATING TO SALE AND/OR USE OF SKYWORKS PRODUCTS INCLUDING WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, PERFORMANCE, QUALITY OR NON-INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. SKYWORKS FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. SKYWORKS SHALL NOT BE LIABLE FOR ANY DAMAGES, INCLUDING SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS THAT MAY RESULT FROM THE USE OF THESE MATERIALS WHETHER OR NOT THE RECIPIENT OF MATERIALS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Skyworks products are not intended for use in medical, lifesaving or life-sustaining applications. Skyworks’ customers using or selling Skyworks products for use in such applications do so at their own risk and agree to fully indemnify Skyworks for any damages resulting from such improper use or sale.

The following are trademarks of Skyworks Solutions, Inc.: Skyworks™, the Skyworks logo, and Breakthrough Simplicity™. Product names or services listed in this publication are for identification purposes only, and may be trademarks of Skyworks or other third parties. Third-party brands and names are the property of their respective owners. Additional information, posted at www.skyworksinc.com, is incorporated by reference.

Additional information, posted at www.skyworksinc.com, is incorporated by reference.